Families of characters for cyclotomic Hecke algebras

Maria Chlouveraki

EPFL

30 MAIOY 2008

Maria Chlouveraki (EPFL)

Families of characters for cyclotomic Hecke

September 14, 2008 1 / 16

A complex reflection group W is a finite group of matrices with coefficients in a number field K generated by pseudo-reflections, *i.e.*, elements whose vector space of fixed points is a hyperplane.

A complex reflection group W is a finite group of matrices with coefficients in a number field K generated by pseudo-reflections, *i.e.*, elements whose vector space of fixed points is a hyperplane.

If $K = \mathbb{Q}$, then W is a Weyl group.

Weyl groups \rightarrow

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Weyl groups \rightarrow Complex reflection groups

- ∢ ≣ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Weyl groups \rightarrow Complex reflection groups

Finite reductive groups \rightarrow

3

3 / 16

-

< 67 ▶

Weyl groups \rightarrow Complex reflection groups Finite reductive groups \rightarrow "Spetses" (?)

3. 3

< 🗗 🕨

Weyl groups \rightarrow Complex reflection groups

Finite reductive groups \rightarrow "Spetses" (?)

Families of characters \rightarrow

Finite reductive groups \rightarrow "Spetses" (?)

Families of characters \rightarrow Rouquier blocks

Hecke algebras of complex reflection groups

Hecke algebras of complex reflection groups

Every complex reflection group W has a nice "presentation a la Coxeter":

$$egin{array}{rcl} {G_2} &=& < s,t \,|\, (st)^3 = (ts)^3, \; s^2 = t^2 = 1 > \ &=& < s,t \,|\, (st)^3 = (ts)^3, \; (s-1)(s+1) = (t-1)(t+1) = 0 > \end{array}$$

Hecke algebras of complex reflection groups

Every complex reflection group W has a nice "presentation a la Coxeter":

$$egin{array}{rcl} {\cal G}_2&=&< s,t\,|\,(st)^3=(ts)^3,\;s^2=t^2=1>\ &=&< s,t\,|\,(st)^3=(ts)^3,\;(s-1)(s+1)=(t-1)(t+1)=0> \end{array}$$

The generic Hecke algebra $\mathcal{H}(W)$ has a presentation of the form:

$$\mathcal{H}(G_2) = <\sigma, \tau | (\sigma \tau)^3 = (\tau \sigma)^3, (\sigma - u_0)(\sigma - u_1) = (\tau - u_2)(\tau - u_3) = 0 > 0$$

and it's defined over the Laurent polynomial ring $\mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$, where $\mathbf{u} = (u_0, u_1, u_2, u_3)$ is a set of indeterminates.

A theorem by G. Malle provides us with a set of indeterminates \mathbf{v} such that the the $K(\mathbf{v})$ -algebra $K(\mathbf{v})\mathcal{H}(W)$ is split semisimple:

$$v_0^2 = u_0, \ v_1^2 = -u_1, \ v_2^2 = u_2, \ v_3^2 = -u_3$$

A theorem by G. Malle provides us with a set of indeterminates \mathbf{v} such that the the $K(\mathbf{v})$ -algebra $K(\mathbf{v})\mathcal{H}(W)$ is split semisimple:

$$v_0^2 = u_0, \ v_1^2 = -u_1, \ v_2^2 = u_2, \ v_3^2 = -u_3$$

By "Tits' deformation theorem", the specialization $v_j \mapsto 1$ induces a bijection

$$\begin{array}{rcl} \operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}(W)) & \leftrightarrow & \operatorname{Irr}(W) \\ \chi_{\mathbf{v}} & \mapsto & \chi \end{array}$$

・ 同 ト ・ 三 ト ・ 三 ト

3

< E

The generic Hecke algebra is endowed with a canonical symmetrizing form *t*. We have that

$$t = \sum_{\chi \in \operatorname{Irr}(W)} rac{1}{s_{\chi}} \chi_{\mathbf{v}},$$

where s_{χ} is the Schur element associated to $\chi_{\mathbf{v}} \in \operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}(W))$.

The generic Hecke algebra is endowed with a canonical symmetrizing form *t*. We have that

$$t = \sum_{\chi \in \operatorname{Irr}(W)} rac{1}{s_{\chi}} \chi_{\mathbf{v}},$$

where s_{χ} is the Schur element associated to $\chi_{\mathbf{v}} \in \operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}(W))$.

Theorem (C.)

The generic Schur elements are polynomials in $\mathbb{Z}_{\mathcal{K}}[\mathbf{v}, \mathbf{v}^{-1}]$ whose irreducible factors are of the form $\Psi(M)$, where

- Ψ is a *K*-cyclotomic polynomial in one variable,
- *M* is a primitive monomial of degree 0,

6 / 16

The generic Hecke algebra is endowed with a canonical symmetrizing form *t*. We have that

$$t = \sum_{\chi \in \operatorname{Irr}(W)} rac{1}{s_{\chi}} \chi_{\mathbf{v}},$$

where s_{χ} is the Schur element associated to $\chi_{\mathbf{v}} \in \operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}(W))$.

Theorem (C.)

The generic Schur elements are polynomials in $\mathbb{Z}_{\mathcal{K}}[\mathbf{v}, \mathbf{v}^{-1}]$ whose irreducible factors are of the form $\Psi(M)$, where

- Ψ is a *K*-cyclotomic polynomial in one variable,
- *M* is a primitive monomial of degree 0, *i.e.*, if $M = \prod_j v_j^{a_j}$, then $gcd(a_j) = 1$ and $\sum_j a_j = 0$.

くほと くほと くほと

The generic Hecke algebra is endowed with a canonical symmetrizing form *t*. We have that

$$t = \sum_{\chi \in \operatorname{Irr}(W)} rac{1}{s_{\chi}} \chi_{\mathbf{v}},$$

where s_{χ} is the Schur element associated to $\chi_{\mathbf{v}} \in \operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}(W))$.

Theorem (C.)

The generic Schur elements are polynomials in $\mathbb{Z}_{\mathcal{K}}[\mathbf{v}, \mathbf{v}^{-1}]$ whose irreducible factors are of the form $\Psi(M)$, where

- Ψ is a K-cyclotomic polynomial in one variable,
- *M* is a primitive monomial of degree 0, *i.e.*, if $M = \prod_j v_j^{a_j}$, then $gcd(a_j) = 1$ and $\sum_j a_j = 0$.

The primitive monomials appearing in the factorization of s_{χ} are unique up to inversion.

Schur elements of G_2

$$s_{1} = \Phi_{4}(v_{0}v_{1}^{-1}) \cdot \Phi_{4}(v_{2}v_{3}^{-1}) \cdot \Phi_{3}(v_{0}v_{1}^{-1}v_{2}v_{3}^{-1}) \cdot \Phi_{6}(v_{0}v_{1}^{-1}v_{2}v_{3}^{-1})$$

$$s_{2} = 2 \cdot v_{1}^{2} v_{0}^{-2} \cdot \Phi_{3}(v_{0} v_{1}^{-1} v_{2} v_{3}^{-1}) \cdot \Phi_{6}(v_{0} v_{1}^{-1} v_{2}^{-1} v_{3})$$

$$\Phi_4(x) = x^2 + 1$$
, $\Phi_3(x) = x^2 + x + 1$, $\Phi_6(x) = x^2 - x + 1$.

< 17 ▶

э

Definition

Let y be an indeterminate. A cyclotomic specialization of $\mathcal{H}(W)$ is a \mathbb{Z}_{K} -algebra morphism $\phi : \mathbb{Z}_{K}[\mathbf{v}, \mathbf{v}^{-1}] \to \mathbb{Z}_{K}[y, y^{-1}]$ such that

 $\phi: v_j \mapsto y^{n_j}$, with $n_j \in \mathbb{Z}$ for all j.

→ Ξ →

< 47 ▶ <

Definition

Let y be an indeterminate. A cyclotomic specialization of $\mathcal{H}(W)$ is a $\mathbb{Z}_{\mathcal{K}}$ -algebra morphism $\phi : \mathbb{Z}_{\mathcal{K}}[\mathbf{v}, \mathbf{v}^{-1}] \to \mathbb{Z}_{\mathcal{K}}[y, y^{-1}]$ such that

 $\phi: v_j \mapsto y^{n_j}$, with $n_j \in \mathbb{Z}$ for all j.

The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{\mathcal{K}}[y, y^{-1}]$ -algebra obtained as the specialization of $\mathcal{H}(W)$ via the morphism ϕ .

- 4 同 6 4 日 6 4 日 6

Definition

Let y be an indeterminate. A cyclotomic specialization of $\mathcal{H}(W)$ is a $\mathbb{Z}_{\mathcal{K}}$ -algebra morphism $\phi : \mathbb{Z}_{\mathcal{K}}[\mathbf{v}, \mathbf{v}^{-1}] \to \mathbb{Z}_{\mathcal{K}}[y, y^{-1}]$ such that

 $\phi: v_j \mapsto y^{n_j}$, with $n_j \in \mathbb{Z}$ for all j.

The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{\mathcal{K}}[y, y^{-1}]$ -algebra obtained as the specialization of $\mathcal{H}(W)$ via the morphism ϕ .

Proposition (C.)

The algebra $K(y)\mathcal{H}_{\phi}$ is split semisimple.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

By "Tits' deformation theorem", we obtain

$$\begin{array}{rcccc} \operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}(\mathcal{W})) & \leftrightarrow & \operatorname{Irr}(\mathcal{K}(y)\mathcal{H}_{\phi}) & \leftrightarrow & \operatorname{Irr}(\mathcal{W}) \\ \chi_{\mathbf{v}} & \mapsto & \chi_{\phi} & \mapsto & \chi \end{array}$$

(日) (同) (三) (三)

By "Tits' deformation theorem", we obtain

$$egin{array}{rcl} \mathrm{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}(\mathcal{W})) & \leftrightarrow & \mathrm{Irr}(\mathcal{K}(y)\mathcal{H}_{\phi}) & \leftrightarrow & \mathrm{Irr}(\mathcal{W}) \ \chi_{\mathbf{v}} & \mapsto & \chi_{\phi} & \mapsto & \chi \end{array}$$

Proposition

The Schur element $s_{\chi_{\phi}}(y)$ associated to the irreducible character χ_{ϕ} of $K(y)\mathcal{H}_{\phi}$ is a Laurent polynomial in y of the form

$$s_{\chi_{\phi}}(y) = \psi_{\chi_{\phi}} y^{a_{\chi_{\phi}}} \prod_{\Phi \in \mathcal{C}_{\mathcal{K}}} \Phi(y)^{n_{\chi_{\phi},\Phi}},$$

where $\psi_{\chi_{\phi}} \in \mathbb{Z}_{K}$, $a_{\chi_{\phi}} \in \mathbb{Z}$, $n_{\chi_{\phi}, \Phi} \in \mathbb{N}$ and C_{K} is a set of K-cyclotomic polynomials.

・何・ ・ヨ・ ・ヨ・ ・ヨ

 Maria Chlouveraki (EPFL)
 Families of characters for cyclotomic Hecke
 September 14, 2008

<ロ> (日) (日) (日) (日) (日)

3

10 / 16

We call Rouquier ring of K the \mathbb{Z}_K -subalgebra of K(y)

$$\mathcal{R}_{\mathcal{K}}(y) := \mathbb{Z}_{\mathcal{K}}[y, y^{-1}, (y^n - 1)_{n \geq 1}^{-1}]$$

3. 3

< 一型

We call Rouquier ring of K the \mathbb{Z}_K -subalgebra of K(y)

$$\mathcal{R}_{K}(y) := \mathbb{Z}_{K}[y, y^{-1}, (y^{n} - 1)_{n \geq 1}^{-1}]$$

Definition

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of $\mathcal{R}_{\mathcal{K}}(y)\mathcal{H}_{\phi}$,

3

- < ∃ →

We call Rouquier ring of K the \mathbb{Z}_{K} -subalgebra of K(y)

$$\mathcal{R}_{\mathcal{K}}(y) := \mathbb{Z}_{\mathcal{K}}[y, y^{-1}, (y^n - 1)_{n \geq 1}^{-1}]$$

Definition

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of $\mathcal{R}_{\mathcal{K}}(y)\mathcal{H}_{\phi}$, *i.e.*, the partition $\mathcal{BR}(\mathcal{H}_{\phi})$ of Irr(W) minimal for the property:

$$\text{For all } B \in \mathcal{BR}(\mathcal{H}_{\phi}) \text{ and } h \in \mathcal{H}_{\phi}, \sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_{K}(y).$$

10 / 16

Let \mathfrak{p} be a prime ideal of $\mathbb{Z}_{\mathcal{K}}$.

æ

∃ →

< A

Let \mathfrak{p} be a prime ideal of $\mathbb{Z}_{\mathcal{K}}$.

We denote by $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ the partition of $\operatorname{Irr}(W)$ into \mathfrak{p} -blocks of \mathcal{H}_{ϕ} (*i.e.*, the blocks of the algebra $\mathbb{Z}_{K}[y, y^{-1}]_{\mathfrak{p}}\mathcal{H}_{\phi}$). Let \mathfrak{p} be a prime ideal of $\mathbb{Z}_{\mathcal{K}}$.

We denote by $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ the partition of $\operatorname{Irr}(W)$ into \mathfrak{p} -blocks of \mathcal{H}_{ϕ} (*i.e.*, the blocks of the algebra $\mathbb{Z}_{\mathcal{K}}[y, y^{-1}]_{\mathfrak{p}}\mathcal{H}_{\phi}$).

Proposition

The Rouquier blocks of \mathcal{H}_{ϕ} is the partition of $\operatorname{Irr}(W)$ generated by the partitions $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$, where \mathfrak{p} runs over the set of prime ideals of \mathbb{Z}_{K} .

3

12 / 16

(日) (同) (三) (三)

Definition

A primitive monomial M in $\mathbb{Z}_{K}[\mathbf{v}, \mathbf{v}^{-1}]$ is called **p**-essential for W if there exists an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

Definition

A primitive monomial M in $\mathbb{Z}_{K}[\mathbf{v}, \mathbf{v}^{-1}]$ is called **p**-essential for W if there exists an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

• $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$

Definition

A primitive monomial M in $\mathbb{Z}_{K}[\mathbf{v}, \mathbf{v}^{-1}]$ is called **p**-essential for W if there exists an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

•
$$\Psi(M)$$
 divides $s_{\chi}(\mathbf{v})$

2
$$\Psi(1) \in \mathfrak{p}$$

・ 同 ト ・ 三 ト ・ 三 ト

3

< 一型

Set $A := \mathbb{Z}_{\mathcal{K}}[\mathbf{v}, \mathbf{v}^{-1}]$ and let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into \mathfrak{p} -blocks of $\mathcal{H}(W)$ (*i.e.*, the blocks of the algebra $A_{\mathfrak{p}}\mathcal{H}(W)$).

Set $A := \mathbb{Z}_{\mathcal{K}}[\mathbf{v}, \mathbf{v}^{-1}]$ and let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into \mathfrak{p} -blocks of $\mathcal{H}(W)$ (*i.e.*, the blocks of the algebra $A_{\mathfrak{p}}\mathcal{H}(W)$).

Theorem (C.)

For every p-essential monomial M for W, there exists a unique partition $\mathcal{B}_{p}^{M}(\mathcal{H})$ of $\operatorname{Irr}(W)$ with the following properties:

Set $A := \mathbb{Z}_{\mathcal{K}}[\mathbf{v}, \mathbf{v}^{-1}]$ and let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into \mathfrak{p} -blocks of $\mathcal{H}(W)$ (*i.e.*, the blocks of the algebra $A_{\mathfrak{p}}\mathcal{H}(W)$).

Theorem (C.)

For every p-essential monomial M for W, there exists a unique partition $\mathcal{B}_{p}^{M}(\mathcal{H})$ of $\operatorname{Irr}(W)$ with the following properties:

• The parts of $\mathcal{B}_{\mathfrak{p}}^{M}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.

Set $A := \mathbb{Z}_{\mathcal{K}}[\mathbf{v}, \mathbf{v}^{-1}]$ and let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into \mathfrak{p} -blocks of $\mathcal{H}(W)$ (*i.e.*, the blocks of the algebra $A_{\mathfrak{p}}\mathcal{H}(W)$).

Theorem (C.)

For every p-essential monomial M for W, there exists a unique partition $\mathcal{B}_{p}^{M}(\mathcal{H})$ of $\operatorname{Irr}(W)$ with the following properties:

- The parts of $\mathcal{B}_{\mathfrak{p}}^{M}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.
- The partition B_p(H_φ) is the partition generated by the partitions B_p(H) et B^M_p(H), where M runs over the set of all p-essential monomials which are sent to 1 by φ.

・ 同 ト ・ 三 ト ・ 三 ト

Set $A := \mathbb{Z}_{\mathcal{K}}[\mathbf{v}, \mathbf{v}^{-1}]$ and let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into \mathfrak{p} -blocks of $\mathcal{H}(W)$ (*i.e.*, the blocks of the algebra $A_{\mathfrak{p}}\mathcal{H}(W)$).

Theorem (C.)

For every p-essential monomial M for W, there exists a unique partition $\mathcal{B}_{p}^{M}(\mathcal{H})$ of $\operatorname{Irr}(W)$ with the following properties:

- The parts of $\mathcal{B}_{\mathfrak{p}}^{M}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.
- The partition B_p(H_φ) is the partition generated by the partitions B_p(H) et B^M_p(H), where M runs over the set of all p-essential monomials which are sent to 1 by φ.

Moreover, the partition $\mathcal{B}_{\mathfrak{p}}^{M}(\mathcal{H})$ coincides with the blocks of the algebra $A_{\mathfrak{q}_{M}}\mathcal{H}(W)$, where $\mathfrak{q}_{M} := (M-1)A + \mathfrak{p}A$.

イロト 不得 とくほ とくほう 二日

The example of G_2

We denote the characters of G_2 as follows:

 $\chi_{1,0}, \ \chi_{1,6}, \ \chi_{1,3'}, \ \chi_{1,3''}, \ \chi_{2,1}, \ \chi_{2,2}.$

The example of G_2

We denote the characters of G_2 as follows:

 $\chi_{1,0}, \ \chi_{1,6}, \ \chi_{1,3'}, \ \chi_{1,3''}, \ \chi_{2,1}, \ \chi_{2,2}.$

Schur elements: 2-essential in purple, 3-essential in green

$$s_{1} = \Phi_{4}(v_{0}v_{1}^{-1}) \cdot \Phi_{4}(v_{2}v_{3}^{-1}) \cdot \Phi_{3}(v_{0}v_{1}^{-1}v_{2}v_{3}^{-1}) \cdot \Phi_{6}(v_{0}v_{1}^{-1}v_{2}v_{3}^{-1})$$

$$s_{2} = 2 \cdot v_{1}^{2} v_{0}^{-2} \cdot \Phi_{3}(v_{0} v_{1}^{-1} v_{2} v_{3}^{-1}) \cdot \Phi_{6}(v_{0} v_{1}^{-1} v_{2}^{-1} v_{3})$$

$$\Phi_4(x) = x^2 + 1$$
, $\Phi_3(x) = x^2 + x + 1$, $\Phi_6(x) = x^2 - x + 1$

→ Ξ →

3

14 / 16

A (1) > A (2) > A

The example of G_2

We denote the characters of G_2 as follows:

 $\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}.$

Schur elements: 2-essential in purple, 3-essential in green

$$s_{1} = \Phi_{4}(v_{0}v_{1}^{-1}) \cdot \Phi_{4}(v_{2}v_{3}^{-1}) \cdot \Phi_{3}(v_{0}v_{1}^{-1}v_{2}v_{3}^{-1}) \cdot \Phi_{6}(v_{0}v_{1}^{-1}v_{2}v_{3}^{-1})$$

$$s_{2} = 2 \cdot v_{1}^{2} v_{0}^{-2} \cdot \Phi_{3}(v_{0} v_{1}^{-1} v_{2} v_{3}^{-1}) \cdot \Phi_{6}(v_{0} v_{1}^{-1} v_{2}^{-1} v_{3})$$

$$\begin{aligned} \Phi_4(x) &= x^2 + 1, \quad \Phi_3(x) = x^2 + x + 1, \quad \Phi_6(x) = x^2 - x + 1 \\ \Phi_4(1) &= 2 & \Phi_3(1) = 3 & \Phi_6(1) = 1 \end{aligned}$$

A (1) > A (2) > A

The 2-essential monomials for G_2 are:

$$M_1 := v_0 v_1^{-1}$$
 and $M_2 := v_2 v_3^{-1}$.

<ロ> (日) (日) (日) (日) (日)

The 2-essential monomials for G_2 are:

$$M_1 := v_0 v_1^{-1}$$
 and $M_2 := v_2 v_3^{-1}$.

The 3-essential monomials for G_2 are:

$$M_3 := v_0 v_1^{-1} v_2 v_3^{-1}$$
 and $M_4 := v_0 v_1^{-1} v_2^{-1} v_3$.

- < ∃ →

< 67 ▶

The 2-essential monomials for G_2 are:

$$M_1 := v_0 v_1^{-1}$$
 and $M_2 := v_2 v_3^{-1}$.

The 3-essential monomials for G_2 are:

$$M_3 := v_0 v_1^{-1} v_2 v_3^{-1}$$
 and $M_4 := v_0 v_1^{-1} v_2^{-1} v_3$.

Monomial	$\mathcal{B}_2^M(\mathcal{H})$	$\mathcal{B}_3^M(\mathcal{H})$
1	$(\chi_{2,1},\chi_{2,2})$	-
<i>M</i> ₁	$(\chi_{1,0},\chi_{1,3'})$, $(\chi_{2,1},\chi_{2,2})$, $(\chi_{1,6},\chi_{1,3''})$	-
<i>M</i> ₂	$(\chi_{1,0},\chi_{1,3''})$, $(\chi_{2,1},\chi_{2,2})$, $(\chi_{1,6},\chi_{1,3'})$	-
<i>M</i> ₃	$(\chi_{2,1},\chi_{2,2})$	$(\chi_{1,0},\chi_{1,6},\chi_{2,2})$
M ₄	$(\chi_{2,1},\chi_{2,2})$	$(\chi_{1,3'},\chi_{1,3''},\chi_{2,1})$

< 67 ▶

3

15 / 16

3

< 行

$$\begin{array}{rcl} \phi^{\mathsf{s}} : & \mathsf{v}_0 \mapsto y & \mathsf{v}_2 \mapsto y \\ & \mathsf{v}_1 \mapsto 1 & \mathsf{v}_3 \mapsto 1 \end{array}$$

3

< 67 ▶

$$\begin{array}{ccc} \phi^{s}: & v_{0} \mapsto y & v_{2} \mapsto y \\ & v_{1} \mapsto 1 & v_{3} \mapsto 1 \end{array}$$

The only essential monomial sent to 1 is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_ϕ are:

$$\begin{array}{ccc} \phi^{s}: & v_{0} \mapsto y & v_{2} \mapsto y \\ & v_{1} \mapsto 1 & v_{3} \mapsto 1 \end{array}$$

The only essential monomial sent to 1 is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_ϕ are:

$$(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}).$$

$$\begin{array}{ccc} \phi^{s}: & v_{0} \mapsto y & v_{2} \mapsto y \\ & v_{1} \mapsto 1 & v_{3} \mapsto 1 \end{array}$$

The only essential monomial sent to 1 is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_ϕ are:

$$(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}).$$

Determination of the Rouquier blocks of the group algebra

$$\phi^{s}: \quad v_{0} \mapsto y \quad v_{2} \mapsto y \\ v_{1} \mapsto 1 \quad v_{3} \mapsto 1$$

The only essential monomial sent to 1 is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_ϕ are:

$$(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}).$$

Determination of the Rouquier blocks of the group algebra

$$\phi^W: \quad v_0 \mapsto 1 \quad v_2 \mapsto 1 \\ v_1 \mapsto 1 \quad v_3 \mapsto 1$$

$$\begin{array}{rcl} \phi^{s} : & v_{0} \mapsto y & v_{2} \mapsto y \\ & v_{1} \mapsto 1 & v_{3} \mapsto 1 \end{array}$$

The only essential monomial sent to 1 is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_ϕ are:

$$(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}).$$

Determination of the Rouquier blocks of the group algebra

$$\phi^{W}: \quad v_0 \mapsto 1 \quad v_2 \mapsto 1 \\ v_1 \mapsto 1 \quad v_3 \mapsto 1$$

All essential monomials are sent to 1. We have:

16 / 16

$$\begin{array}{rcl} \phi^{s} : & v_{0} \mapsto y & v_{2} \mapsto y \\ & v_{1} \mapsto 1 & v_{3} \mapsto 1 \end{array}$$

The only essential monomial sent to 1 is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_ϕ are:

$$(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}).$$

Determination of the Rouquier blocks of the group algebra

$$\phi^{W}: \begin{array}{ccc} v_0 \mapsto 1 & v_2 \mapsto 1 \\ v_1 \mapsto 1 & v_3 \mapsto 1 \end{array}$$

All essential monomials are sent to 1. We have:

#2 2-blocks $(\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}), (\chi_{2,1}, \chi_{2,2})$

$$\begin{array}{rcl} \phi^{s} : & v_{0} \mapsto y & v_{2} \mapsto y \\ & v_{1} \mapsto 1 & v_{3} \mapsto 1 \end{array}$$

The only essential monomial sent to 1 is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_ϕ are:

$$(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}).$$

Determination of the Rouquier blocks of the group algebra

$$\phi^{W}: \begin{array}{ccc} v_0 \mapsto 1 & v_2 \mapsto 1 \\ v_1 \mapsto 1 & v_3 \mapsto 1 \end{array}$$

All essential monomials are sent to 1. We have:

#2 2-blocks
$$(\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}), (\chi_{2,1}, \chi_{2,2})$$

#2 3-blocks $(\chi_{1,0}, \chi_{1,6}, \chi_{2,2}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1})$

$$\begin{array}{rcl} \phi^{s} : & v_{0} \mapsto y & v_{2} \mapsto y \\ & v_{1} \mapsto 1 & v_{3} \mapsto 1 \end{array}$$

The only essential monomial sent to 1 is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_ϕ are:

$$(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}).$$

Determination of the Rouquier blocks of the group algebra

$$\phi^{W}: \quad \begin{array}{ccc} v_0 \mapsto 1 & v_2 \mapsto 1 \\ v_1 \mapsto 1 & v_3 \mapsto 1 \end{array}$$

All essential monomials are sent to 1. We have:

 $\begin{array}{ll} \#2 \ 2\text{-blocks} & (\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}), (\chi_{2,1}, \chi_{2,2}) \\ \#2 \ 3\text{-blocks} & (\chi_{1,0}, \chi_{1,6}, \chi_{2,2}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}) \\ \#1 \ \text{Rouquier block} & (\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}) \end{array}$